

HOMAPAL laminate (NF-Metal) SRM

Processing of HOMAPAL laminate (NF-Metal) SRM

The HOMAPAL laminate (NF-metal) SRM is a new type of laminate with a particularly scratch-resistant surface. SRM stands for "Scratch Resistant Matt". This laminate can be glued to standard wood-based panels such as chipboard or MDF. In particular, the demanding laminates with integrated non-ferrous metal foils (aluminium, copper and brass) are to be described in this processing recommendation.

General machining guidelines

When machining HOMAPAL laminate (NF-Metal) SRM, the reference values from the table for the selection of the cutting speed (v_c) and the tooth feed rate (f_z) should be observed, depending on the machining method.

Machining method	Cutting speed v _c m/s
Sawing	75 - 90
Hogging	60 - 80
Cutting	40 - 70
Boring	0.5 - 2.0

Machining method	Tooth feed rate f _z in mm
Sawing	0.05 - 0.12
Hogging	0.12 - 0.16
Cutting	0.40 - 0.70
Boring	0.05 - 0.15

These parameters are in relation to the tool diameter (D), number of teeth (Z), RPM (n) and feed speed (v_r) used on the processing machine. The right selection of these factors is responsible for a good machining result.

The following formulas apply to the calculation of cutting speed, tooth feed rate and feed speed:

v_c – Cutting speed [m/s]

- $v_c = D \cdot \pi \cdot n / 60 \cdot 1000$
- D Tool diameter [mm]
- n RPM of tool [min⁻¹]

fz - Tooth feed rate [mm]

- $f_z = v_f \cdot 1000 / n \cdot z$
- v_f Feed speed [m/min]
- n RPM of tool [min⁻¹]
- z Number of teeth

HOMAPAL laminate (NF-Metal) SRM

v_f – Feed speed [m/min-1]

- $v_f = f_z \cdot n \cdot z / 1000$
- f_z Tooth feed rate [mm]
- n RPM of tool [min⁻¹]
- z Number of teeth

General tool

For optimum edge quality, tools with new or newly repaired cutting edges are recommended.

Cutting material

Basically, both tools with carbide cutting edges (HW) and diamond cutting edges (DP diamond polycrystalline) can be used. The use of tools with diamond cutting edges (DP) is recommended in order to extend the tool life at high cutting volume.

Cutting the panels with circular sawblades

General note:

- Visible side (decorative side with foil) upwards
- Make sure that the sawblade protrudes correctly (see table)
- Adjust RPM and number of teeth to feed speed
- The use of a scoring sawblade is recommended for precise cuts on the bottom side of the panel

Depending on the sawblade protrusion, the entry and exit angle and thus the quality of the cutting edge change. If the top cutting edge becomes rough, set the sawblade higher. If the cut on the bottom side is rough, the sawblade must be set lower. In this way the most favourable height setting must be determined.

The following sawblade protrusions (Ü) must be set for sizing and panel sizing saws, depending on the diameter (D):

Circular sawblade diameter D [mm]	Protrusions Ü [mm]
250	
300	
350	ca. 15 - 20
400	
450	

Sawblades with a high number of teeth are generally recommended for good machining quality. For circular sawing, the recommended cutting speed v_c is 75 - 90 m/s.

HOMAPAL laminate (NF-Metal) SRM

Recommended saw tooth shape

Sizing circular sawblades

Best machining results are achieved with the Leitz RazorCut circular sawblades. For long tool life, DP-tipped WhisperCut circular sawblades are recommended. Suitable dimensions of both circular sawblades are included in the Leitz Lexicon.

Panel sizing sawblades

With RazorCut circular sawblades, the best machining results are achieved at high feed rates. DP-tipped TR/TR circular sawblades are recommended for long tool life. Dimensions of both types of circular sawblades are included in the Leitz Lexicon.

Scoring sawblades

With HOMAPAL laminate (NF-metal) SRM, the use of a pre-scoring circular sawblade is necessary to achieve a good edge quality on the tooth exit side. Existing scoring circular sawblades can possibly be reused. For best tool life, DP-tipped scoring circular sawblades are recommended.

Jointing on table milling machine or throughfeed systems

In order to produce edges free of break-outs on the cover layers of the panel, jointing tools with alternate shear angles should be used. Diamond cutterheads such as Leitz WhisperCut with a shear angle of 30° to 50° are recommended. The chip removal should be as low as possible and not exceed 2 mm.

For good cutting results, it is advantageous to use tools with high concentricity and balancing quality which are achieved by using centering adaptors such as hydraulic clamping systems, HSK holders or shrink-fit clamping systems.

Only tools marked "MAN" or "BG-Test" may be used when working with manual feed on table milling machines. Furthermore, for safety reasons, the speed range specified on the tool must not be exceeded or fallen short of. The tools for manual feed may only be used when running against the feed.

The application parameters of the jointing cutters should be selected so that the tooth feed (fz) is between 0.4 and 0.7 mm. The DP-WhisperCut EdgeExpert version is recommended for perfect cutting results.

leitz

Processing recommendation

HOMAPAL laminate (NF-Metal) SRM

Jointing cutter Diamaster WhisperCut

Dimensions DxSBxBo	RPM n	No. of teeth	Feed speed v _f		Machine	
[mm]	[min ⁻¹]	Z	[m/min]	LH	RH	
85x43x30	12,000	3	14 - 25	192076	192077	Ott
100x32x30	12,000	3	14 - 25	192090	192091	IMA
100x43x30	12,000	2	8 - 18	192082	192083	Stefani, Holz Her
100x43x30	12,000	2	8 - 18	192080	192081	Hebrock, EBM
100x43x30	12,000	3	14 - 25	192088	192088	Biesse
100x43x30	12,000	3	14 - 25	090885	090886	Brandt
125x32x30	9,000	3	14 - 25	192092	192093	IMA
125x43x30	9,000	3	14 - 25	075627	075627	Homag, Biesse
125x43x30	9,000	3	14 - 25	192094	192095	IMA

Other dimensions available on request

Jointing cutter Diamaster WhisperCut EdgeExpert

Dimensions DxSBxBo	RPM n	No. of teeth	Feed speed v _f	Leitz	: ID	Machine
[mm]	[min ⁻¹]	Z	[m/min]	LH	RH	
125x43x30	9,000	3	14 - 25	192249	192249	Biesse
125x63x30	9,000	3	14 - 25	192250	192250	Biesse
125x43x30	9,000	3	14 - 25	192249	192249	Homag
125x43x30	9,000	3	14 - 25	192251	192252	IMA
125x63x30	9,000	3	14 - 25	192301	192302	IMA

Other dimensions available on request

HOMAPAL laminate (NF-Metal) SRM

Hoggers for throughfeed machines

Diamond compact hoggers, which generate little friction and cutting pressure, are recommended. The Leitz Diamaster DT Premium type mounted on a hydraulic clamping element is particularly suitable for maximum radial and axial runout and excellent machining quality and tool life. The cutting speed (v_c) is 80 m/s at the usual speed (n) 6,000 min⁻¹ and diameter (D) 250 mm. The application parameters and the number of teeth of the hoggers should be selected so that the tooth feed (f_z) is between 0.12 - 0.16 mm.

Dimensions	RPM n	No. of teeth	Feed speed v _f	Leitz ID, D	Leitz ID, DT Premium	
DxSBxBo [mm]	[min⁻¹]	Z	[m/min]	LH	RH	
250x10x60	6,000	24	15 - 24	190410	190411	
250x10x60	6,000	36	25 - 35	190418	190419	
250x10x60	6,000	48	35 - 45	190426	190427	
250x10x60	6,000	60	45 - 55	190434	190435	

Other dimensions available on request

Leitz DT Premium hogger

leitz

HOMAPAL laminate (NF-Metal) SRM

Edge finishing on edge banding machines

Radii cutters and scrapers on edge banding machines must be set so that the tools do not touch the tool material and do not damage the protective foil.

Radii cutter / bevel cutter

Radii cutters should have a profile run-out of at least 10°. The setting of the radii and bevel cutters must be selected so that there is no contact with the protective foil.

Profile scrapers

Profile scrapers are equipped with a profile relief and can easily be used for finishing the HOMAPAL laminate (NF-Metal) SRM with exact adjustment. In order to avoid possible damage to the protective foil, scrapers with a larger profile relief of up to 15 degree are recommended.

Flat scrapers

Flat scrapers should preferably have an inclination of 2 - 4° from the edge to the plate and should not touch the protective foil.

All dimensions available on request

HOMAPAL laminate (NF-Metal) SRM

CNC Stationary machines

Spiral solid carbide cutters (VHW) or preferably diamond tipped (DP) routers are best suited for machining on router and machining centres. Tools with alternating cutting angles are absolutely necessary.

Good workpiece clamping on the machine must be ensured. To support the vacuum suction devices, additional mechanical fixtures can be used if necessary. We recommend stable and rigid Leitz Thermo-Grip[®] shrink chucks for maximum concentricity, balancing quality and perfect cutting quality. A good machining result can only be achieved with sufficient rigidity of the machine. Rigid portal machines are perfect.

For the best possible cutting results, the components must be recut after sizing (oversize max. 2 mm) in a second working cycle (finishing cycle). Pre and re-cut must be carried out against feed (GGL).

Recommended application data:

RPM n = $20,000 - 24,000 \text{ min}^{-1}$ Full cut feed rate (v_f): Z1 = 6 - 8 m/min

Z2 = 12 - 16 m/min

Z3 = 18 - 24 m/min

Dimensions DxNLxS [mm]	No. of teeth Z	Direction of rotation	Version	Leitz ID
12x24x12	2 + 2	RH	Diamaster Pro, Nesting	191060
16x28x20	2 + 2	RH	Diamaster Pro	191042
20x28x20	2 + 2	RH	Diamaster Quattro	091235
20x28x20	3 + 3	RH	Diamaster Plus ³	191051
25x30x25	3 + 3	RH	Diamaster Plus ³ EdgeExpert	191073

Other dimensions available on request

Boring

Due to the surface finish of the HOMAPAL laminate (NF-Metal) SRM, bores are difficult to produce on the visible side, so that boring is only possible on the opposite side without tearing. For boring, carbide tipped or solid carbide (VHW) spiral drills, dowel drills and hinge boring bits are recommended. Due to the higher stability on CNC machining centres, the application of hinge boring bits in the main spindle instead of in the drill unit is recommended.

Dowel drill

Row hole borings for shelf supports are not recommended due to insufficient edge quality. For all other applications, the following tools can be used according to the tables below.

RPM n [min ⁻¹]	4,000 - 6,000
Feed speed v _f [m/min]	0.5 - 2

HOMAPAL laminate (NF-Metal) SRM

Dimensions No. of teeth	Version	Leitz ID		
DxNLxGL [mm]	Z	version	LH	RH
5x35x70	Z 2 / V 2	HW-dowel drill Standard	033440	033441
8x35x70	Z 2 / V 2	HW-dowel drill Standard	033446	033447
10x35x70	Z 2 / V 2	HW-dowel drill Standard	033448	033449
5x35x70	Z 2 / V 2	HW-solid-dowel drill Excellent	033496	033497
8x35x70	Z 2 / V 2	HW-solid-dowel drill Excellent	033500	033501
10x35x70	Z 2 / V 2	HW-solid-dowel drill Excellent	033540	033541

Other dimensions available on request

Through-hole boring bit

RPM n [min⁻¹] Feed speed v_f [m/min] 4,000 - 6,000 0.5 - 1

Dimensions No. of teeth	Version	Leitz ID		
DxNLxGL [mm]	Z	Version	LH	RH
5x35x70	Z 2 / V 2	HW-through-hole drill Standard	034074	034075
8x35x70	Z 2 / V 2	HW-through-hole drill Standard	034076	034077
5x35x70	Z 2 / V 2	HW-solid-through-hole drill Excellent	034100	034101
8x35x70	Z 2 / V 2	HW-solid-through-hole drill Excellent	034104	034105

Other dimensions available on request

Hinge boring bit

RPM n [min ⁻¹]	
Feed speed vf [m/min]	

Hinge borings can preferably be drilled with solid carbide hinge boring bits. The following Leitz tools are recommended for this purpose:

3,000 - 4,500 0.5 - 2

Dimensions	No. of teeth	Varsion	Leitz ID	
DxNLxGL [mm]	Z	Version	LH	RH
15x70	Z 2 / V 2	HW-solid hinge boring bit	037203	037204
20x70	Z 2 / V 2	HW-solid hinge boring bit	037205	037206
25x70	Z 2 / V 2	HW-solid hinge boring bit	037207	037208
26x70	Z 2 / V 2	HW-solid hinge boring bit	037209	037210
30x70	Z 2 / V 2	HW-solid hinge boring bit	037211	037212
35x70	Z 2 / V 2	HW-solid hinge boring bit	037213	037214

Other dimensions available on request

leitz

Processing recommendation

HOMAPAL laminate (NF-Metal) SRM

Dimensions	No. of teeth	Vorsion	Leitz ID	
DxNLxGL [mm]	Z	Version	LH	RH
15x70	Z 3 / V 3	HW-solid hinge boring bit	037284	037285
20x70	Z 3 / V 3	HW-solid hinge boring bit	037270	037271
25x70	Z 3 / V 3	HW-solid hinge boring bit	037272	037273
26x70	Z 3 / V 3	HW-solid hinge boring bit	037274	037275
30x70	Z 3 / V 3	HW-solid hinge boring bit	037276	037277
35x70	Z 3 / V 3	HW-solid hinge boring bit	037280	037281

Other dimensions available on request

Performance times

Tool performance times are influenced by a variety of factors, so that no performance time statements or rights can be derived within the scope of this machining guideline. The information on the tools and machining parameters are recommended guide values. Machine or process constellations can lead to deviating parameters. An optimal adaptation of machine, tool and material as well as customer-specific requirements can only be carried out on site together with a Leitz application engineer. Due to the high quality requirements and special finish quality of the HOMAPAL laminate (NF-Metal) SRM, a shortening of the tool life compared to conventionally coated panels is expected with reference to the influencing factors mentioned above.

HOMAPAL laminate (NF-Metal) SRM

Explanation of abbreviations

Α	= dimension A	LH	 left hand rotation
a	= cutting thickness (radial)		matrix thread
a	= cutting depth (axial)	M	= metric thread
ADM	= almension	MC	= minimum order quantity
APL	= panel raising length	MD	= multi-purpose steel, coaled
APT	= panel raising deput	min ⁻¹	= uncontess of kine - revolutions per minute (DDM)
AL	 number of knives 	MK	= revolutions per minute (hPW)
AC	= number of knives	m min ⁻¹	= morse taper
AS	= anti sound (low noise design)	m e ⁻¹	 metres per minute metres per second
b	- overbang	111.5	= metres per second
Ř	- width	0	- RPM
BDD	 thickness of shoulder 		- maximum permissible RPM
BEM	- note	NAI	 nosition of hub
BE7	= description	ND	= thickness of hub
BH	 tipping beight 	NH	 zero height
BO	= bore diameter	NL	= cutting length
		NLA	= pinhole dimensions
CNC	 Computerized Numerical Control 	NT	= grooving depth
			_ <u>g.cor.n.g.copu.</u>
d	= diameter	Р	= profile
D	 cutting circle diameter 	POS	= cutter position
DO	= zero diameter	PT	= profile depth
DA	 outside Diameter 	PG	= profile group
DB	 diameter of shoulder 		
DFC	 Dust Flow Control (optimised chip clearance) 	QAL	 cutting material quality
DGL	 number of links 		
DIK	= thickness	R	= radius
DKN	 double keyway 	RD	= right hand twist
DP	 polycrystalline diamond 	RH	 right hand rotation
DRI	= rotation	RP	= radius of cutter
FAB	 width of rebate 	S	 shank dimension
FAT	 depth of rebate 	SB	= cutting width
FAW	= bevel angle	SET	= set
FLD	= flange diameter	SLB	= slotting width
f,	= tooth feed	SLL	= slotting length
t _{z off}	= effective tooth feed	SET	= slotting depth
0514	derived.	SP	= tool steel
GEW	= thread	SI	= Cobalt-basis cast alloys,
GL	= total length		e.g. Stellit*
GS	= Plunging edge	SIO	= shank tolerance
	1.11.	SW	= cutting angle
H	= height	TD	discustors of teach bands
	= tungsten carbide, coated	TD	= diameter of tool body
HU	 wood thickness (thickness of workpiece) 	TO	= thickness of tool
	= high-alloyed tool steel	TV	= pitch
	= high-speed steel (HSS)	IK	= reference diameter
LIAA A	= tungsten carbide (TCT)	ШТ	- cutting edges with irregular pitch
ID	- ident number	01	= cutting edges with inegular pitch
N	 insulation glazing 	v	- number of spurs
		v	 cutting speed
KBZ	= abbreviation	v	= feed speed
KLH	= clamping height	ŇЕ	= packing unit
KM	= edge breaker	VSB	= adjustment range
KN	= single keyway	100	
KNL	= combination pinhole consists of	WSS	= workpiece material
	2/7/42 2/9/46,35 2/10/60		
		Z	= number of teeth
L	= length	ZA	= number of fingers
I.	= clamping length	ZF	= tooth shape (cutting edge shape)
LD	 left hand twist 	ZL	= finger length
LEN	 Leitz standard profiles 		

In the present machining recommendation, corresponding parameters for the optimum machining of the designated materials are presented. The information on tools and machining parameters are standard values without any claim to completeness and general validity. Machine-related or process-related boundary conditions can lead to deviating application parameters. In individual cases, individual adjustments may be necessary. In particular, the respective manufacturer's specifications regarding the intended use of the machine, tools and material must be observed. No rights can be derived from this machining recommendation. For the solution of complex tasks, please contact our technical consultant.

The information is based on the current state of the art and was compiled with special care and in accordance to the best of our knowledge. Through continuous technical development and new standards and laws, technical changes can be made.

Leitz GmbH & Co. KG, Leitzstraße 2, 73447 Oberkochen, Phone +49 7364 950-0, leitz@leitz.org, www.leitz.org, version 2021 10 / 10