

HOMAPAL Magnethaftplatten SRM

Bearbeitung von HOMAPAL Magnethaftplatten SRM

Die nachfolgende Bearbeitungsempfehlung bezieht sich auf Span- und Faserwerkstoffplatten mit einer magnetischen Dekorschicht aus einer in einem Laminat eingebundenen Stahlfolie bzw. Stahlgewebe sowie einer kratzunempfindlichen HOMAPAL-Mattoberfläche SRM mit Antifingerprint-Eigenschaften.

Allgemeine Bearbeitungshinweise

Die Bearbeitung von HOMAPAL Magnethaftplatten SRM erfordert angepasste Werkzeuge und Bearbeitungsabläufe. Bei der Bearbeitung kann es in Ausnahmefällen zur Funkenbildung kommen. Daher sind die nachfolgend empfohlenen Werkzeuge optimiert zur Vermeidung von Funkenbildung. Trotzdem müssen aus Sicherheitsgründen weitere Vorkehrungen zur Brandvermeidung getroffen werden.

Im Zweifelsfall sollte die Absaugung während der Bearbeitung ausgeschaltet werden.

Vermeiden Sie lose Staub- und Späneansammlungen innerhalb des Arbeitsbereiches der Maschinen. Weiter müssen die Maschinenbediener über geeignete Schutzausrüstung, wie Schutzkleidung und Schutzhandschuhe, verfügen und Schutzbrillen tragen.

Bei der Bearbeitung von HOMAPAL Magnethaftplatten SRM sollten je nach Bearbeitungsverfahren die Richtwerte aus der Tabelle für die Wahl der Schnittgeschwindigkeit (v_c) und des Zahnvorschubes (f_z) beachtet werden.

Bearbeitungs- verfahren	Schnittgeschwindigkeit v _c m/s
Sägen	70 - 80
Zerspanen	Wird nicht empfohlen
Fräsen	Wird nicht empfohlen
Oberfräsen	5 - 15
Bohren	0,5 - 2,0

Bearbeitungs- verfahren	Zahnvorschub fz mm
Sägen	0,02 - 0,05
Zerspanen	-
Fräsen	-
Oberfräsen	0,20 - 0,80
Bohren	0,30 - 0,70

Diese Parameter stehen im Zusammenhang mit Werkzeugdurchmesser (D), Zähnezahl (Z), Drehzahl (n) und Vorschubgeschwindigkeit (vf) im Einsatz auf der Bearbeitungsmaschine. Die richtige Wahl dieser Faktoren ist für ein gutes Bearbeitungsergebnis verantwortlich.

HOMAPAL Magnethaftplatten SRM

Für die Berechnung von Schnittgeschwindigkeit, Zahnvorschub und Vorschubgeschwindigkeit gelten folgende Formeln:

vc - Schnittgeschwindigkeit [m/s]

 $v_c = D \cdot \pi \cdot n / 60 \cdot 1000$

D – Werkzeugdurchmesser [mm]

n – Werkzeugdrehzahl [min⁻¹]

fz - Zahnvorschub [mm]

 $f_z = v_f \cdot 1000 / n \cdot z$

v_f – Vorschubgeschwindigkeit [m/min]

n – Werkzeugdrehzahl [min⁻¹]

z – Zähnezahl

v_f - Vorschubgeschwindigkeit [m/min-1]

 $v_f = f_z \cdot n \cdot z / 1000$

f_z – Zahnvorschub [mm]

n – Werkzeugdrehzahl [min⁻¹]

z – Zähnezahl

Werkzeug allgemein

Für eine optimale Kantenqualität sind Werkzeuge mit neuen bzw. neu instand gesetzten Schneiden zu empfehlen.

HOMAPAL Magnethaftplatten SRM

Sägen

Einzelplattenzuschnitt auf Formatkreissägen

- Kreissägeblatt 300x3,2x30 Z 96 FZ/TR Ident.-Nr. 165727
- Überstand Kreissägeblatt über Material Ü = 10 15 mm
- Schnittgeschwindigkeit v_c = 70 80 m/s
- Bei einseitig mit Stahleinlage beschichteten Platten können vorhandene Ritzkreissägeblätter verwendet werden

Einzelplattenzuschnitt auf Druckbalkensägen

- Kreissägeblatt 350x3,2x30 Z 108 FZ/TR Ident.-Nr. 165730
- Überstand Kreissägeblatt über Material Ü = 10 15 mm
- Zahnvorschub f_z = 0,02 0,05 mm (beim Kreissägeblatt D 350 Z 108 ca. 10 15 m/min)
- Schnittgeschwindigkeit v_c = 70 80 m/s (bei D 350 ca. 3.800 4.400 U/min)
- Bei einseitig mit Stahleinlage beschichteten Platten können vorhandene Ritzkreissägeblätter verwendet werden
- Weitere Abmessungen dieser Kreissägeblätter für alle gängigen Maschinen am Markt sind im umfangreichen Leitz-Produktprogramm enthalten. Erweiterungen der Bohrung sowie Hinzufügen von Nebenlöchern ebenfalls möglich.

Einzelplattenbearbeitung auf CNC-Bearbeitungszentren

Speziell empfohlen für die Bearbeitung von beidseitig mit Stahleinlage beschichteten Platten.

- Empfehlung: Vorritzen im Gleichlauf mit 1,5 2 mm Zustellung und anschließend Trennen im Gegenlauf
- Kreissägeblätter Empfehlung:
 200x3,2x30 Z 48 FZ/TR Ident.-Nr. 166304
 250x3,2x30 Z 80 FZ/TR Ident.-Nr. 166306
- Zahnvorschub f_z = 0,02 0,05 mm
- Schnittgeschwindigkeit v_c = 70 80 m/s
- Weitere Abmessungen dieser Kreissägeblätter für alle gängigen Aggregate am Markt sind im umfangreichen Leitz-Produktprogramm enthalten. Erweiterungen der Bohrung sowie Hinzufügen von Nebenlöchern ebenfalls möglich. Flansche zur Aufnahme des Kreissägeblattes mit HSK 63F ebenfalls verfügbar.

HOMAPAL Magnethaftplatten SRM

Füge- und Formatfräsen auf CNC-Oberfräsen und Bearbeitungszentren

Maschine

CNC-Oberfräsen und Bearbeitungszentren

Werkzeugempfehlung

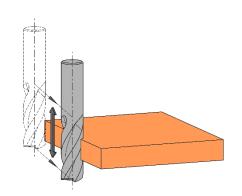
HW-massive Spiralschlichtfräser mit wechselseitigem Drall Z 2+2 (alternativ HW-Wendemesser Schaftfräser)

Empfohlene Einsatzdaten:

Drehzahl n = $4.000 - 9.000 \text{ min}^{-1}$

Vorschub v_f: HW-massiv = 3 - 5 m/min,

HW-Wendeplatte = 2 - 4 m/min


Schnittrichtung: Gleichlauf (GLL)

Hinweis

Im ersten Schritt ist immer ein möglichst konturnaher Zuschnitt auf der Formatkreissäge oder mittels Sägeblatt auf dem Bearbeitungszentrum vorzunehmen. Hinweise zu den empfohlenen Sägeblättern finden Sie im vorangegangenen Kapitel.

Um mit den Fräswerkzeugen möglichst hohe Standwege zu erreichen, muss während der Fräsbearbeitung eine **kontinuierliche** Verstellung des Werkzeugs in der Z-Achse erfolgen (oszillieren).

Das Oszillationsmaß sollte dabei einen Wert von min. 5 - 6 mm aufweisen, je nach Materialstärke und gewähltem Werkzeug auch mehr. Das Aufmaß der Teile vor dem Fräsen darf nicht mehr als ca. 1 - 2 mm betragen. Je größer das Aufmaß, desto größer der Verschleiß am Fräser!

Bearbeiten von Magnethaftplatten mit PKD-Werkzeugen ist nicht möglich!

Empfohlene Werkzeuge:

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	Leitz ID
12	70	25	12x40	RL	042536
16	100	40	16x50	RL	042537
18	100	50	18x50	RI	042538

Alternativ können auch Wendeplatten-Schaftfräser zum Einsatz kommen:

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	Leitz ID
18	115	50	20x50	RL	040848
18	125	50	25x60	RL	040850
18	125	50	25x60	LL	040849

HOMAPAL Magnethaftplatten SRM

Fügefräsen auf Kantenanleimmaschinen oder Tischfräsen

Die Bearbeitung von HOMAPAL Magnethaftplatten SRM mittels Fügefräsen wird nur in absoluten Ausnahmefällen empfohlen. Daher sollte auf Kantenanleimmaschinen immer ohne Fügefräsung gearbeitet werden.

Fügefräser mit Hartmetall-Wendeschneidplatten eignen sich nur bedingt für HOMAPAL Magnethaftplatten SRM. Das Aufmaß muss so gering wie möglich gewählt werden (< 1 mm) – möglichst endkonturnah zuschneiden.

Fügefräser mit PKD-Schneiden sind gänzlich ungeeignet zur Bearbeitung von Magnethaftplatten!

Bohren

Maschine

Bohrautomaten, CNC-Bearbeitungszentren, Ständerbohrmaschinen

Werkzeugempfehlung

HW-Dübellochbohrer Z 2 mit Sonderanschliff, HW-massive Durchgangslochbohrer Z 2, HW-Beschlaglochbohrer Z 2 / V 2

Empfohlene Einsatzdaten:

Drehzahl n = $3.000 - 4.500 \text{ min}^{-1}$ (Beschlaglochbohrer: n = $2.500 - 3.500 \text{ min}^{-1}$) Vorschub $v_f = 1 - 1,5 \text{ m/min}$ (Anbohrvorschub 0,5 m/min)

Hinweis

Der Anbohrvorschub wird bis zu einer Bohrtiefe von ca. 2 - 3 mm eingestellt. Anschließend kann mit dem angegebenen Bohrvorschub bis auf die endgültige Bohrtiefe gebohrt werden.

Bei Durchgangslochbohrungen ist der Vorschub vor dem Austritt der Bohrer an der Unterseite ebenfalls zu reduzieren.

Die Beschlaglochbohrer können nur in Bohrspindeln mit Spindelarretierung (Spindelklemmung in der Vorlegeposition) oder in der Hauptspindel eingesetzt werden. Alternativ können Beschlaglochbohrungen auch mit geeigneten Fräswerkzeugen hergestellt werden (Zirkularfräsung). Geeignete Fräswerkzeuge siehe vorangegangenes Kapitel.

Dübellochbohrer

D	GL	NL	S	Leitz ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
5	70	35	10x30	130068510	130068509
6	70	35	10x30	130068512	130068511
8	70	35	10x30	130068514	130068513
10	70	35	10x30	130068516	130068515

Weitere Abmessungen auf Anfrage

HOMAPAL Magnethaftplatten SRM

Durchgangslochbohrer

D	GL	NL	S	Leitz ID	
[mm]	[mm]	[mm]	[mm]	LL	RL
5	70	35	10x25	034100	034101
6	70	35	10x25	034102	034103
8	70	35	10x25	034104	034105
10	70	35	10x25	034114	034115

Weitere Abmessungen auf Anfrage

Beschlaglochbohrer

D	GL	S Leitz		itz ID
[mm]	[mm]	[mm]	LL	RL
15	70	10x26	034663	034664
20	70	10x26	034665	034666
25	70	10x26	_	034668
35	70	10x26	034671	034672

Weitere Abmessungen auf Anfrage

HOMAPAL Magnethaftplatten SRM

Erläuterung der Kurzzeichen

A	= Маß А	LL	= Linkslauf
a.	= Schnittdicke (radial)		
a _p	= Schnittdicke (axial)	M	= Metrisches Gewinde
ÁBM	= Abmessung	MBM	 Mindestbestellmenge
APL	= Abplattlänge	MC	 Mehrbereichsstahl, beschichtet
APT	= Abplatttiefe	MD	= Messerdicke
AL	= Arbeitslänge	min ⁻¹	 Umdrehung pro Minute
AM	= Anzahl Messer	MK	= Morsekonus
AS	 Anti Schall (lärmreduzierte Ausführung) 	m min-1	= Meter pro Minute
		m s ⁻¹	 Meter pro Sekunde
Ь	= Auskraglänge		
В	= Breite	n	= zulässiger Drehzahlbereich
BDD	= Bunddicke	n _{max} .	= maximale Drehzahl
BEM	= Bernerkung	NAL	= Nabenlage
BEZ	= Bezeichnung	ND	= Nabendicke
BH	= Bestückungshöhe	NH	= Nullhöhe
ВО	= Bohrungsdurchmesser	NL	= Nutzlänge
0110	0	NLA	= Nebenlochabmessung
CNC	= Computerized Numerical Control	NT	= Nuttiefe
d	= Durchmesser	Р	= Profil
D	= Durchmesser	POS	= Fräserposition
D0	= Nulldurchmesser	PT	= Profiltiefe
DA	= Außendurchmesser	PG	= Profilgruppe
DB	= Bunddurchmesser		
DFC	 Dust Flow Control (optimierte Späneerfassung) 	QAL	 Schneidstoffqualität
DGL	 Anzahl Doppelglieder 		
DIK	= Dicke	R	= Radius
DKN	= Doppelkeilnut	RD	= Rechtsdrall
DP	 Polykristalliner Diamant (PKD) 	RL	= Rechtslauf
DRI	= Drehrichtung	RP	= Radius Fräsprofil
FAB	= Falzbreite	s	= Schaftabmessung
FAT	= Falztiefe	SB	= Schnittbreite
FAW	= Fasewinkel	SET	= Set
FLD	= Flanschdurchmesser	SLB	= Schlitzbreite
f _z	= Zahnvorschub	SLL	= Schlitzlänge
f _{z of}	 effektiver Zahnvorschub 	SLT	= Schlitztiefe
		SP	= Spezialstahl
GEW	= Gewinde	ST	 Gusslegierungen auf Kobalt-Basis,
GL	= Gesamtlänge		z.B. Stellit ^e
GS	 Grundschneide (Bohrschneide) 	STO	= Schafttoleranz
		SW	= Spanwinkel
Н	= Höhe		
HC	 Hartmetall, beschichtet 	TD.	 Tragkörperdurchmesser
HD	 Holzdicke (Werkstückdicke) 	TDI	= Tragkörperdicke
HL	 Hochlegierter Werkzeugstahl 	TG	= Teilung
HS	 Schnellarbeitsstahl (HSS) 	TK	 Teilkreisdurchmesser
HW	= Hartmetall	UT	= Ungleichteilung der Schneiden
ID	= Identnummer	UI	= Ungleichteilung der Schneiden
IV	= Isolierverglasung	V	 Vorschneideranzahl
		v _c	 Schnittgeschwindigkeit
KBZ	= Kurzbezeichnung	v,	 Vorschubgeschwindigkeit
KLH	= Klemmhöhe	VΈ	 Verpackungseinheit
KM	= Kantenmesser	VSB	= Verstellbereich
KN	= Keilnut		
KNL	= Kombinationsnebenloch bestehend aus:	WSS	= Werkstückstoff
	2/7/42 2/9/46,35 2/10/60	_	
		Z	= Zähnezahl
	= Länge	Z ZA	= Zähnezahl = Anzahl Zinken
 L I	= Länge = Aufspannlänge		= Anzahl Zinken
	= Länge = Aufspannlänge = Linksdrall	ZA	

In der vorliegenden Bearbeitungsempfehlung werden entsprechende Parameter für die optimale Bearbeitung der bezeichneten Werkstoffe dargestellt. Die Angaben zu Werkzeugen und Bearbeitungsparametern sind Richtwerte ohne Anspruch auf Vollständigkeit und Allgemeingültigkeit. Maschinelle oder ablaufbedingte Randbedingungen können zu abweichenden Einsatzparametern führen. Im Einzelfall können individuelle Anpassungen erforderlich sein. Insbesondere sind die jeweiligen Herstellerangaben über den bestimmungsgemäßen Einsatz von Maschine, Werkzeug und Werkstoff zu beachten. Aus dieser Bearbeitungsempfehlung können keine Rechte abgeleitet werden. Zur Lösung von komplexen Aufgabenstellungen wenden Sie sich bitte an unseren Fachberater.

Die Angaben basieren auf dem aktuellen Stand der Technik und wurden mit besonderer Sorgfalt und nach bestem Wissen erstellt. Durch die kontinuierliche technische Weiterentwicklung sowie durch neue Normen und Gesetze können technische Änderungen erfolgen.